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Introduction

One of the most important problems in nonlinear analysis is the so called
(scalar) equilibrium problem (abbreviated (EP)), which can be formulated as
follows. Let A and B be two nonempty sets and f : A × B → R a given
function. The problem consists on finding an element ā ∈ A such that

f(ā, b) ≥ 0, for all b ∈ B. (1)

The element ā satisfying (1) is called equilibrium point of f on A×B.
(EP) has been extensively studied in recent years (e.g. [27], [28], [29],

[30], [31], [82], [83], [84], [88] and the references therein). Apart from its
theoretical interest, important problems arising from economics, mechanics,
electricity and other practical sciences motivate the study of (EP). Equilib-
rium problems include, as particular cases, scalar and vector optimization
problems, saddle point (minimax) problems, variational inequalities, Nash
equilibria problems, complementarity problems, fixed point problems, etc.

As far as we know the term ”equilibrium problem” was attributed in [31],
but the problem itself has been investigated more than twenty years before
in a paper of Ky Fan [69] in connection with the so called ”intersection
theorems” (i.e., results stating the nonemptiness of a certain family of sets).
Ky Fan considered (EP) in the special case A = B a compact convex subset
of a Hausdorff topological vector space and termed it ”minimax inequality”.
Within short time (in the same year) Brézis, Nirenberg and Stampacchia [50]
improved Ky Fan’s result, extending it to a not necessarily compact set, but
assuming instead a so-called ”coercivity condition”, which is automatically
satisfied when the set is compact.

Recent results on (EP) emphasizing the existence of solutions can be
found in [27], [28], [29], [120], and many other papers. New necessary (and
in some cases also sufficient) conditions for existence of solutions in infinite
dimensional spaces were proposed in [83], and later on simplified and further
analyzed in [82].

The first fundamental concept in well posedness area is inspired by the
classical idea of J. Hadamard in 1922, which goes back to the beginning of
the previous century. It requires the existence and uniqueness of the optimal
solution together with continuous dependence on the problems data.

In the early sixties A. Tikhonov introduced another concept of well posed-
ness imposing convergence of every minimizing sequence to the unique mini-



CONTENTS 3

mum point. Its relevance to the approximate solution of optimization prob-
lems is clear.

Let a scalar optimization problem (D, h)

minh(a), a ∈ D

where h : D → R, and D is a nonempty set. The problem is Tikhonov well
posed if and only if there exists exactly one a0 ∈ D such that h(a0) ≤ h(a)
for all a ∈ D and

h(an)→ h(a0)

implies an → a0.

Example 0.0.1. Let D = Rn and h(a) = |a| (taking any norm).
Then 0 = argmin(D, h) and cleary (D, h) is Tikhonov well posed.

Example 0.0.2. Let D = R and

h(a) =

{
a for a > 0

|a+ 1| for a ≤ 0
,

the problem (D, h) is not Tikhonov well posed (in this case we say that the
problem is Tikhonov ill posed). Ineed, the only minimum point is a0 = −1,
but the minimizing sequence an = 1/n does not converge to a0.

Dattoro in [59] says that the duality is a powerful and widely employed
tool in applied mathematics for a number of reasons. First, the dual program
is always convex even if the primal is not. Second, the number of variables in
the dual is equal to the number of constraints in the primal which is often less
than the number of variables in the primal program. Third, the maximum
value achieved by the dual problem is often equal to the minimum of the
primal.

This work is organized as follows. First we recall some definitions, which
help the reader to understand easily the following parts.

The second chapter is based on the equilibrium problem and its gen-
eralizations. We present some existence results of solutions for the scalar
and vector equilibrium problems. In recent years the vector and multifunc-
tion form of the equilibrium problem has been studied extensively (see, e.g.,
[ [51], [80]). These problems can be formulated as follows. Let A be a
nonempty subset of a topological vector space X,B a nonempty set, Z a
topological vector space, C ⊂ Z a convex and solid cone, and f : A×B → Z
be a vector-valued function. The weak vector equilibrium problem is

find ā ∈ A such that f(ā, b) /∈ − intC for all b ∈ B. (2)
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In the final section of the chapter we extend the results from the vector
equilibrium problems to the so-called weak multifunction equilibrium prob-
lems. If f : A×B → 2Z , one way to define the weak multifunction equilibrium
problem is th following:

find ā ∈ A such that f(ā, b) * − intC for all b ∈ B. (3)

Observe that this problem reduces to weak vector equilibrium problem when
f is single valued. We give two existence theorems and two corollaries for
the weak multifunction equilibrium problem.

Chapter three is devoted to well posedness for different equilibrium prob-
lems. We establish the relation between Tikhonov well posedness for equilib-
rium problems and Tikhonov well posedness for noncooperative games, then
prove the equivalence of this type of well posedness to equilibrium problems
and noncooperative games. Using the results, in the second part we deduce
the relation between diameter properties. In the second part of this chapter
we extend some results obtained by Bianchi, Kassay and Pini in [26] to the
strong vector equilibrium problem. Also, we study the weak vector equi-
librium problem and assert the definitions for B-well posedness and M-well
posedness to the weak case. The relationship between these type of well
posedness is established, and we give sufficient conditions for the equivalence
between well posedness notions.

In the last part of this work we discuss some applications. Chapter five
is based on the noncooperative game and the cooperative games. First, we
present the well known two-person zero sum noncooperative games and sad-
dle points, offering examples. Furthermore, we show how a cooperative game
can be obtained from a noncooperative game (Battle of the Sexes). Through-
out the following section applications of cooperative games such as “A pro-
duction economy with landowners and peasants”, ”An exchange economy
with traders of two types“, “The airport game”, “The bankruptcy game”,
“Cooperative water resource development in Japan”, and the “Simple game“
are presented. In most of these cases the elements of the player set repre-
sent real persons, e.g., landowners and peasants, traders, creditors or voters,
or the player set can also consist of objectives as in the well-known TVA
cases, airport landings by planes or agricultural associations and city water
services.

In the last section we deduce the dual representation between character-
istic function and indirect function of transferable utility games.

Finally we give a closedness type regularity condition that ensures the
maximal monotonicity of the generalized sum S +A∗TA involving strongly-
representable monotone operators, and, we show that our condition is weaker
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than those mentioned above.we give an useful application for the stable strong
duality involving the function f+g◦A, where f and g are proper, convex and
lower semicontinuous functions, and A is a linear and continuous operator.
We also introduce some generalized inf-convolution formulas, and establish
some result concerning on their Fenchel conjugate. In the last part, some par-
ticular instances, to which the general results on the maximal monotonicity
of S + A∗TA give rise, are considered.

The author’s contributions to this thesis are based on five papers, four
of them written in collaboration. One of them paper [52] concerning weak
multifunction equilibrium problems appeared in The Special Volume in Hon-
our of Boris Mordukhovich, Springer Optimization and its Application in
2010, the other [47] published online in Set-Valued and Variational Analysis
in 2011, the other three [46], [45], [78] are submitted to ISI journals.

Our original results are formulated in the following definitions, theorems,
propositions and corollaries:

Chapter 2: Lemma 2.3.46, Definition 2.3.47, Theorem 2.3.50, Corollary
2.3.49, Corollary 2.3.50.

Chapter 3: Theorem 3.1.9, Theorem 3.1.20, Proposition 3.2.11, Proposi-
tion 3.2.12, Definition 3.2.13, Remark 3.2.15, Definition 3.2.16, Proposition
3.2.17, Proposition 3.2.18.

Chapter 4: Remark 4.5.33, Theorem 4.5.35, Corollary 4.5.36, Theorem
4.5.38, Corollary 4.5.39, Theorem 4.5.41, Corollary 4.5.42, Theorem 4.5.43,
Corollary 4.5.44, Theorem 4.5.45 Remark 4.5.46, Remark 4.5.47, Remark
4.5.48.

Chapter 5: Theorem 5.2.61, Remark 5.2.63, Theorem 5.2.64, Remark
5.2.65, Corollary 5.2.66, Corollary 5.2.67, Theorem 5.2.68, Remark 5.2.69,
Corollary 5.2.70, Theorem 5.3.71, Theorem 5.3.73, Corollary 5.4.74, Corol-
lary 5.4.75, Corollary 5.4.76, Corollary 5.4.77.
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Preliminaries

This chapter presents the mathematical notions used throughout the thesis.
The definitions of the concepts widely utilized in the field are given here, as
well as the remarks and propositions related to these.



Chapter 2

Equilibrium problem

2.1 Scalar equilibrium problem

Let A and B be two nonempty sets and ϕ : A × B → R a given function.
The scalar equilibrium problem consists on

(EP ) finding ā ∈ A such that ϕ(ā, b) ≥ 0 for all b ∈ B.

We present some existence results of solutions for (EP). A general ex-
istence result for the problem (EP) has been established by Kassay and
Kolumbán also in [89], where instead of the convexity (concavity) assump-
tions upon the function f , certain kind of generalized convexity (concavity)
assumptions are supposed.

Theorem 2.1.3. Let A be a compact topological space, let B be a nonempty
set, and let f : A×B → R be a given function such that

(i) for each b ∈ B, the function ϕ : A→ R is usc;

(ii) for each a1, ..., am ∈ A, b1, ..., bk ∈ B, λ1, ..., λm ≥ 0 with∑m
i=1 λi = 1, the inequality

min
1≤j≤k

m∑
i=1

λif(ai, bj) ≤ sup
a∈A

min
1≤j≤k

f(a, bj)

holds;

(iii) For each b1, ..., bk ∈ B, µ1, ..., µk ≥ 0 with
∑k

j=1 µj = 1, one has

sup
a∈A

k∑
j=1

µjf(a, bj) ≥ 0.
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Then the equilibrium problem (EP) admits a solution.

2.2 Vector equilibrium problem

If the scalar function ϕ is replaced by a vector-valued function, say ϕ :
A × B → Z a given function, where A and B are two nonempty sets, Z is
a topological vector space, partially ordered by the convex cone C ⊆ Z with
intC 6= ∅, one may consider the so-called vector equilibrium problem in two
ways:

(V EP ) find ā ∈ A such that ϕ(ā, b) /∈ −C\ {0} for all b ∈ B

and

(WVEP ) find ā ∈ A such that ϕ(ā, b) /∈ −intC for all b ∈ B.

The first problem is called strong equilibrium problem, while the second
one is called weak equilibrium problem.

Let A be a nonempty subset of X, B a nonempty set, and let ϕ : A×B →
Z. The next result provides sufficient condition for the existence of solutions
of (WVEP).

Theorem 2.2.4. [51] Let A be a compact set and let ϕ : A × B → Z be a
function such that

(i) for each b ∈ B, the function ϕ(·, b) : A→ Z is usc on A;
(ii) for each a1, a2, . . . , am ∈ A, λ1, λ2, . . . , λm

geq0 with
∑m

i=1 λi = 1, b1, . . . , bn ∈ B there exists u∗ ∈ C∗\ {0} such that

min
1≤j≤n

m∑
i=1

λiu
∗(ϕ(ai, bi)) ≤ sup

a∈A
min
1≤j≤n

u∗(ϕ(a, bj));

(iii) for each b1, . . . , bn ∈ B and z∗1 , . . . , z
∗
n ∈ C∗ not all zero one has

sup
a∈A

n∑
j=1

z∗j (ϕ(a, bj)) ≥ 0.

Then the equilibrium problem (WVEP) admits a solution.
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2.3 Multifunction equilibrium problem

Let A be a nonempty subset of a real topological vector space X, B a
nonempty set, Z a normed space, C ⊆ Z a convex and solid cone, and
let ϕ : A× B → 2Z be a multifunction. We study the following weak multi-
function equilibrium problem:

(WWMEP ) find ā ∈ A such that ϕ(ā, b) * −intC for all b ∈ B.

By C(Z) we denote the set of all compact subsets of the space Z.
We need the following technical result whose proof is based on a separa-

tion theorem in infinite dimensional spaces.

Lemma 2.3.5. (A. Capata, G. Kassay, B. Mosoni [52]) Let ϕ : A× B →
C(Z) be a multifunction such that

(i) if the system {Ub,k | b ∈ B, k ∈ intC} covers A, then it contains a
finite subcover, where

Ub,k = {a ∈ A|ϕ(a, b) + k ⊆ −intC};

(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
∑m

i=1 λi = 1, b1, . . . , bn ∈
B, for all dij ∈ ϕ(ai, bj) where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} there exists
u∗ ∈ C∗ \ {0} such that

min
1≤j≤n

m∑
i=1

λiu
∗(dij) ≤ sup

a∈A
min
1≤j≤n

max u∗(ϕ(a, bj)),

where max u∗(ϕ(a, bj)) is the greatest element of the compact set u∗(ϕ(a, bj)) ⊆
R;

(iii) for each b1, . . . , bn ∈ B and z∗1 , . . . , z
∗
n ∈ C∗ not all zero

sup
a∈A

n∑
j=1

max z∗j (ϕ(a, bj)) ≥ 0.

Then the equilibrium problem (WWMEP ) admits a solution.

Following the definition of C-subconvexlikeness we introduce a new con-
vexity notion.

Definition 2.3.6. (A. Capata, G. Kassay, B. Mosoni [52]) Let T : X ×
Y → 2Z be a multifunction, C ⊂ Z a convex and solid cone. T is said to
be C-subconvexlike in its first variable if for each θ ∈ intC, x1, x2 ∈ X and
t ∈ (0, 1) there exists an x3 ∈ X such that

θ + tT (x1, y) + (1− t)T (x2, y) ⊂ T (x3, y) + intC for all y ∈ Y.



2.3 Multifunction equilibrium problem 11

We say that T is C-subconcavelike in its first variable if −T is C-subconvexlike
in its first variable.

The next result provides sufficient conditions for the existence of (WWMEP )
by means of convexity and continuity assumptions.

Theorem 2.3.7. (A. Capata, G. Kassay, B. Mosoni [52]) Let A be a com-
pact set and ϕ : A×B → C(Z) such that:

(i) ϕ(·, b) is upper −C-continuous for all b ∈ B;
(ii) ϕ is C-subconcavelike in its first variable;
(iii) for each b1, . . . , bn ∈ B and z∗1 , . . . , z

∗
n ∈ C∗ not all zero yields

sup
a∈A

n∑
j=1

max z∗j (ϕ(a, bj)) ≥ 0.

Then the equilibrium problem (WWMEP ) admits a solution.

Now, let us consider the particular case: Z = R and C = R+. Then
ϕ : A× A→ 2R and (WWMEP ) becomes:

(MEP ) find ā ∈ A such that ϕ(ā, b) * − intR+ for all b ∈ A.

For this particular case, using the previous results we obtain the following.

Corollary 2.3.8. (A. Capata, G. Kassay, B. Mosoni [52]) Let ϕ : A×B →
C(R) be a multifunction such that

(i) if the system {Ub,k | b ∈ B, k > 0} covers A, then it contains a finite
subcover, where

Ub,k = {a ∈ A|ϕ(a, b) + k ⊆ −intR+};

(ii) for each a1, . . . , am ∈ A, λ1, . . . , λm ≥ 0 with
∑m

i=1 λi = 1, b1, . . . , bn ∈
B, for all dij ∈ ϕ(ai, bj) where i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}

min
1≤j≤n

m∑
i=1

λid
i
j ≤ sup

a∈A
min
1≤j≤n

max ϕ(a, bj);

(iii) for each b1, . . . , bn ∈ B and z∗1 , . . . , z
∗
n ≥ 0 not all zero

sup
a∈A

n∑
j=1

max z∗j (ϕ(a, bj)) ≥ 0.

Then the equilibrium problem (MEP ) admits a solution.
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Corollary 2.3.9. (A. Capata, G. Kassay, B. Mosoni [52]) Let A be a
compact set and ϕ : A×B → C(R) such that:

(i) ϕ(·, b) is upper −R+-continuous for all b ∈ B;
(ii) ϕ is R+-subconcavelike in its first variable;
(iii) for each b1, . . . , bn ∈ B and z∗1 , . . . , z

∗
n ≥ 0 not all zero yields

sup
a∈A

n∑
j=1

max z∗j (ϕ(a, bj)) ≥ 0.

Then the equilibrium problem (MEP ) admits a solution.

Let A be a nonempty, closed and convex subset of a real locally convex
space and suppose that ϕ(a, b) is a compact subset of R for each a, b ∈ A.
We observe that (MEP ) is equivalent to the problem:

find ā ∈ A such that max ϕ(ā, b) ≥ 0 for all b ∈ A,

or, in order words:

(EP ) find ā ∈ A such that ψ(ā, b) ≥ 0 for all b ∈ A,

where ψ : X ×X → R ∪ {+∞}, with A × A ⊆ dom f , defined by ψ(a, b) =
maxϕ(a, b) for all a, b ∈ A. Further suppose that maxϕ(a, a) = 0 for all
a ∈ A. Let a ∈ X. According to [4], (EP ) can be reduced to the optimization
problem

P (a) inf
b∈A

ψ(a, b).

Is easy to check that ā ∈ A is a solution of (EP ) if and only if it is a
solution of P (ā).



Chapter 3

Well posed equilibrium problem

3.1 Tikhonov well posedness

Given a nonempty set D and a function F : D × D → R, the problem
of interest, called equilibrium problem (EP) consists of finding an element
a ∈ D such that

F (ā, b) ≥ 0, for every b ∈ D. (1)

Let F be a given function such that F (a, a) = 0 for every a ∈ D.
Let the extended-valued gap function G : D → [−∞,+∞) defined by

G(a) = infb∈D F (a, b), and G is non-positive on the set D, and G(ā) = 0 if
and only if ā is a solution of EP.

Definition 3.1.1. [25] The equilibrium problem EP is Tikhonov well-posed
if

(i) there exists only one solution a ∈ D of EP,
(ii) for every sequence {an} ⊂ D such that G(an)→ 0, it is an → a.

Definition 3.1.2. A game G=(X, Y, f, g) is called Tikhonov well posed,
(i) if there is a unique (x̄, ȳ) Nash equilibrium and
(ii) every asymptotically Nash equilibrium (xn, yn) converges to (x̄, ȳ).

Now we are able to assert the following result:

Theorem 3.1.3. (B. Burjan-Mosoni (Mosoni) [45]) Let X, Y Hausdorff
topological spaces and G = (X, Y, f, g) the associated two person game with
the real valued utility functions f, g.

The game G is Tikhonov well posed if and only if the equilibrium problem
EP(F,X×Y ) is Tikhonov well posed too, where F (a, b) = f(x, y)−f(u, y)+
g(x, y)− g(x, v) for all a = (x, y) ∈ X × Y and b = (u, v) ∈ X × Y.
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The relation between the diameters.

Theorem 3.1.4. (B. Burjan-Mosoni (Mosoni) [45]) If there is a Nash
equilibrium for the game G = (X, Y, f, g) and

lim
ε→0,k→∞

diam Ωk
ε = 0,

then
diam(ε− argmin(EP ))→ 0, where ε↘ 0.

Moreover, the converse is true if a → F (a, b) is upper semi continuous for
every b ∈ D and every ε > 0 and the payoff functions f and g are bounded
from above.
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3.2 B-well posedness and M-well posedness

for vector equilibrium problem

Let X, Y be topological vector spaces with countable bases and C be a closed
convex cone in Y with nonempty interior. Given f : X × X → Y with
property f(x, x) = 0, for all x ∈ X, the weak vector equilibrium problem is:
find x̄ ∈ X such that

f(x̄, y) /∈ −int C, for all y ∈ X (2)

We introduce the set valued map Φ : X → 2Y (see also [11]) given by:

Φ(x) = w-min
C

(f(x,X)), (3)

where for any A ⊂ Y, the set of minimal elements is defined as follows:
w-minC(A) = {a′ ∈ A : (A− a′) ∩ (−int C) = ∅}.

The x̄ ∈ S if and only if 0 ∈ Φ(x̄), where we call S the solution set and
we will suppose in the sequel that S is nonempty.

Proposition 3.2.1. The map Φ satisfies the relations:

1. Φ(x) ∩ int C = ∅, for all x ∈ X;

2. x̄ ∈ S ⇔ 0 ∈ Φ(x̄);

3. x̄ ∈ S ⇒ Φ(x̄) ∩ C 6= ∅;

4. x̄ ∈ S ⇔ Φ(x̄) ∩ C ′ 6= ∅;

where C ′ = (int C) ∪ {0}.

Proposition 3.2.2. If f(x, y) = F (y) − F (x), then {xn} is maximizing if
and only if

F (xn) ⇀H w-minC F (X) i.e., {xn} is a minimizing sequence for the vec-
tor optimization problem, according to [115].

Definition 3.2.3. We say that the vector equilibrium problem (2) is M-well-
posed if:

(i) there exists at least one solution, i.e., S 6= ∅;
(ii) for every maximizing sequence, and for every VX ∈ VX(0), there exists

n0 such that xn ∈ S + VX , for every n ≥ n0.

In what follows we extend the definition of ε− argmin(EP ) to the weak
vector valued case (ε− argmin(EP )).
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Definition 3.2.4. Given ε ∈ C, the set
S(ε) = {x ∈ X : Φ(x) ∩ (C − ε) 6= ∅} is called the ε-approximate solution

set of (2).

Notice that S(0) = S, by definition 3.

Remark 3.2.5. This definition can be also related to the notion of ε-weak-
minimal solutions wQ(ε) = ∪y∈w-minC F (X){x ∈ X : F (x) ∈ y+ε−C}. In case
of vector optimization problems, where f(x, y) = F (y) − F (x), one trivially
shows that S(ε) = wQ(ε) for every x ∈ X.

Definition 3.2.6. We say that the vector equilibrium problem (2) is B-well-
posed if

(i) there exists at least one solution, i.e., S 6= ∅;
(ii) the map S(·) : C → 2X is upper Hausdorff continuous at ε = 0, i.e.,

for every VX ∈ VX(0) there exists VY ∈ VY (0) such that S(ε) ⊂ S + VX for
every ε ∈ VY ∩ C.

Proposition 3.2.7. Any B-well-posed weak vector equilibrium problem is
M-well-posed.

Proposition 3.2.8. Assume that the weak vector equilibrium problem is M-
well-posed and for every VY ∈ VY (0) there exists ṼY ∈ VY (0) such that

Φ(X\cl(S)) ∩ (C + ṼY ) ⊆ VY .

Then, the problem is B-well-posed.



Chapter 4

Noncooperative and
cooperative games

4.1 Two-person zero sum noncooperative games

and saddle points

The saddle point (minimax theorems)
Let X, Y be two nonempty sets and h : X × Y → R be a given function.

The pair (x̄, ȳ) ∈ X × Y is called a saddle point of h on the set X × Y if

h(x, ȳ) ≤ h(x̄, ȳ) ≤ h(x̄, y), ∀(x, y) ∈ X × Y. (1)

Let A = B = X × Y and let f : A×B → R defined by

f(a, b) := h(x, v)− h(u, y), ∀a = (x, y), b = (u, v). (2)

Then each solution of the equilibrium problem (EP) is a saddle point of h,
and vice-versa.

The saddle point can be characterized as follows. Suppose that for
each x ∈ X there exists miny∈Y h(x, y), and for each y ∈ Y there exists
maxx∈X h(x, y). Then we have the following result.

Proposition 4.1.9. f admits a saddle point on X × Y if and only if there
exist maxx∈X miny∈Y f(x, y) and miny∈Y maxx∈X f(x, y) and they are equal.

Two-player zero-sum games
Duality in optimization
This (general) problem has many important particular cases: The opti-

mization problem with inequality and equality constraints.
This problem has two main cases: The linear programming problem.

The conical programming problem.
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4.2 Examples for noncooperative games

To underline the importance of (EP) we present in this section some of its
various particular cases which have been extensively studied in the literature.
The most of them are models of real life problems originated from mechanics,
economy, biology, etc.

The convex minimization problem Fixed point problem Complementarity
problem Nash equilibria problem in noncooperative games Vector Minimiza-
tion Problem

4.3 Cooperative games obtained by noncoop-

erative games

Let us recall the ”Battle of the Sexes” game where the strategies are given.
The corresponding bilosses are given by the matrix

L :=

(
(1, 4) (0, 0)
(0, 0) (4, 1)

)
Definition 4.3.10. Let G2 be a (noncooperative) two-person game with finite
strategy sets S1 and S2 and let L = (L1, L2) be its biloss operator. Then the
corresponding cooperative game is given by the biloss operator

L̂ : ∆S1×S2 → R× R

∑
i,j

λij(si, s̃j) 7→
∑
i,j

λijL(si, s̃j)

where ∆S1×S2 = {
∑

i,j λij(si, s̃j)|
∑

i,j λij = 1, λij ∈ [0, 1]} is the (formal)
simplex spanned by the pure strategy pairs (si, s̃j).

Definition 4.3.11. Given a two person game G2 and let L̂ be the biloss
operator of the corresponding cooperative game. A pair of losses (u, v) ∈
im(L̂) is called jointly sub-dominated by a pair (u′, v′) ∈ im(L̂) if u′ ≤ u and
v′ ≤ v and (u′, v′) 6= (u, v). The pair (u, v) is called Pareto optimal if it is
not jointly sub-dominated.

Definition 4.3.12. Given a two person game G2 and let L̂ be the biloss
operator of the corresponding cooperative game. The set

B := {(u, v) ∈ im(L)|u ≤ u∗, v ≤ v∗ and (u, v) Pareto optimal }

is called the bargaining set (sometimes also negotiation set).
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4.4 Cooperative games in characteristic func-

tion form

Definition 4.4.13. Let n ∈ N. A cooperative n-person game in characteristic
function form is an ordered pair (N, v), where N is a set of n elements and
v : 2N → R is a real-valued set-function on the set 2N of all subsets of N
such that v(∅) = 0.

Elements of the set N are called players and the relevant set-function
v the characteristic function of the game. A subset S of the player set N
(S ⊂ N) is called a coalition and v(S) the worth of coalition S in the game.
In many cases, the elements of the player set N represent real persons, e.g.,
landowners and peasants, traders, creditors or voters, but the player set can
also consist of objectives as in the well known TVA cases, airport landings
by planes or agricultural associations and city water services.

4.5 Dual representation between characteris-

tic function and indirect function of TU

games

Fix the player set N and its power set P(N) = {S|S ⊆ N} consisting of all
the subsets of N (including the empty set ∅). A cooperative transferable util-
ity (TU) game is given by the so-called characteristic function v : P(N)→ R
satisfying v(∅) = 0. That is, the TU game v assigns to each coalition S ⊆ N
its worth v(S) amounting the (monetary) benefits achieved by cooperation
among the members of S.

Definition 4.5.14. ( [100], page 292) With every n-person TU game v :
P(N)→ R, there is associated the indirect function πv : RN → R, given by

πv(~y) = max
S⊆N
{v(S)−

∑
k∈S

yk} for all ~y = (yk)k∈N ∈ RN , (3)

where, for every S ⊆ N (including the empty set ∅), the excess ev(S, ~y) =
v(S)−

∑
k∈S

yk.

Remark 4.5.15. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) With a set X ⊆ Rn and a function f : X → R ∪ {+∞,−∞}, there is
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associated its Fenchel–Moreau conjugate function f ∗X : Rn → R∪{+∞,−∞}
defined by

f ∗X(~y) = sup[< ~y, ~x > −f(~x) | ~x ∈ X] for all ~y ∈ Rn

In the setting of an n-person TU game v : P(N) → R with v(∅) = 0, put
X = {−1S ∈ Rn | S ⊆ N} as well as the function f v : X → R given
by f v(~x) = −v(S) whenever ~x = −1S, then the Fenchel-Moreau conjugate
f ∗v,X : Rn → R agrees with the indirect function πv of the form (3).

Theorem 4.5.16. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Let the n-person TU game v : P(N)→ R be 1-convex. Then its indirect
function πv : RN → R satisfies the following properties:

(i) πv(~y) = max[0, v(N) −
∑
k∈N

yk] for all ~y = (yk)k∈N ∈ RN with

yi ≤ bvi for all i ∈ N .

(ii)

πv(~y) = max[0, v(N\{`})−
∑

k∈N\{`}

yk]

= max[0, v(N)−
∑
k∈N

yk + y` − bv` ]

for all ~y = (yk)k∈N ∈ RN such that there exists a unique ` ∈ N with
y` > bv` and yi ≤ bvi for all i ∈ N , i 6= `.

Corollary 4.5.17. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) For every 1-convex n-person TU game v : P(N) → R, the following
three statements concerning a payoff vector ~y = (yk)k∈N ∈ RN are equiva-
lent.

(i) ~y ∈ Core(v), i.e., ~y(N) = v(N) and ~y(S) ≥ v(S) for all
S ⊆ N , S 6= ∅

(ii) ~y(N) = v(N) and πv(~y) = 0

(iii) ~y(N) = v(N) and ~y ≤ ~bv, i.e., yi ≤ bvi for all i ∈ N

In the remainder of this section, we switch from 1-convex to 2-convex
n-person games.

Theorem 4.5.18. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Let the n-person TU game v : P(N)→ R be 2-convex. Then its indirect
function πv : RN → R satisfies the following properties:
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(i) πv(~y) = max[0, v(N)−
∑
k∈N

yk, (v({i})−yi)i∈N ] for all ~y ∈ RN with

~y ≤ ~bv.

(ii) πv(~y) = max[0, v(N\{`}) −
∑

k∈N\{`}
yk] = max[0, v(N) −

∑
k∈N

yk +

y` − bv` ] for all ~y = (yk)k∈N ∈ RN such that there exists a unique
` ∈ N with y` > bv` ≥ v({`}) and v({i}) ≤ yi ≤ bvi for all i ∈ N , i 6= `.

(iii) πv(~y) = max[v(N) −
∑
k∈N

yk, v({j}) − yj] for all ~y = (yk)k∈N ∈ RN

such that there exists a unique j ∈ N with yj < v({j}) ≤ bvj and
v({i}) ≤ yi ≤ bvi for all i ∈ N , i 6= j.

(iv) πv(~y) = max[v(N\{`}) −
∑

k∈N\{`}
yk, v({j}) − yj] = max[v(N) −∑

k∈N
yk + y` − bv` , v({j}) − yj] for all ~y = (yk)k∈N ∈ RN such that

there exist unique j, ` ∈ N with y` > bv` ≥ v({`}), yi ≤ bvi for all i ∈ N ,
i 6= `, and yj < v({j}) ≤ bvj , yi ≥ v({i}) for all i ∈ N , i 6= j.

Corollary 4.5.19. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) For every 2-convex n-person TU game v : P(N) → R, the following
three statements concerning a payoff vector ~y = (yk)k∈N ∈ RN are equiva-
lent.

(i) ~y ∈ Core(v), i.e., ~y(N) = v(N) and ~y(S) ≥ v(S) for all
S ⊆ N , S 6= ∅

(ii) ~y(N) = v(N) and πv(~y) = 0

(iii) ~y(N) = v(N) and v({i}) ≤ yi ≤ bvi for all i ∈ N

Theorem 4.5.20. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Let the n-person TU game v : P(N)→ R be a big boss game, say player
1 is the big boss. Then its indirect function πv : RN → R satisfies the follow-
ing properties:

(i) πv(~y) = max[0, v(N) −
∑
k∈N

yk] for all ~y = (yk)k∈N ∈ RN with 0 ≤

yi ≤ bvi for all i ∈ N\{1}.

(ii) πv(~y) = max[0, v(N\{`})−
∑

k∈N\{`}
yk] = max[0, v(N)−

∑
k∈N

yk+y`−

bv` ] for all ~y = (yk)k∈N ∈ RN such that there exists a unique ` ∈ N\{1}
with y` > bv` ≥ 0 and 0 ≤ yi ≤ bvi for all i ∈ N\{1, `}.
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(iii) πv(~y) = max[−y`, v(N) −
∑
k∈N

yk] for all ~y = (yk)k∈N ∈ RN such

that there exists a unique ` ∈ N\{1} with y` < 0 ≤ bv` and 0 ≤ yi ≤ bvi
for all i ∈ N\{1, `}.

(iv) πv(~y) = max[−yj, v(N\{`})−
∑

k∈N\{`}
yk] = max[−yj, v(N)−

∑
k∈N

yk+

y` − bv` ] for all ~y = (yk)k∈N ∈ RN such that there exist unique
j, ` ∈ N\{1} with y` > bv` ≥ 0, yj < 0 ≤ bvj , and 0 ≤ yi ≤ bvi for
all i ∈ N\{1, j, `}.

Corollary 4.5.21. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) For every n-person big boss game v : P(N) → R, with player 1
as the big boss, the following three statements concerning a payoff vector
~y = (yk)k∈N ∈ RN are equivalent.

(i) ~y ∈ Core(v), i.e., ~y(N) = v(N) and ~y(S) ≥ v(S) for all
S ⊆ N , S 6= ∅

(ii) ~y(N) = v(N) and πv(~y) = 0

(iii) ~y(N) = v(N) and 0 ≤ yi ≤ bvi for all i ∈ N\{1}
Theorem 4.5.22. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Let the n-person TU game v : P(N) → R be a clan game, say coali-
tion T ⊆ N with at least two players is the clan. Then its indirect function
πv : RN → R satisfies the following properties:

(i) πv(~y) = max[0, v(N)−
∑
k∈N

yk] for all ~y = (yk)k∈N ∈ RN with yi ≥ 0

for all i ∈ N and yi ≤ bvi for all i ∈ N\T .

(ii) πv(~y) = max[0, v(N\{`}) −
∑

k∈N\{`}
yk] = max[0, v(N) −

∑
k∈N

yk +

y` − bv` ] for all ~y = (yk)k∈N ∈ RN such that there exists a unique
` ∈ N\T with y` > bv` ≥ 0, yi ≤ bvi for all i ∈ N\T , i 6= `, and yi ≥ 0
for all i ∈ N .

(iii) πv(~y) = max[−y`, v(N) −
∑
k∈N

yk] for all ~y = (yk)k∈N ∈ RN such

that there exists a unique ` ∈ N with y` < 0, yi ≥ 0 for all i ∈ N\{`},
and yi ≤ bvi for all i ∈ N\T .

(iv) πv(~y) = max[−yj, v(N\{`})−
∑

k∈N\{`}
yk] = max[−yj, v(N)−

∑
k∈N

yk+

y`− bv` ] for all ~y = (yk)k∈N ∈ RN such that there exist unique j ∈ N ,
` ∈ N\T with yj < 0, yi ≥ 0 for all i ∈ N\{j}, and y` > bv` ≥ 0,
yi ≤ bvi for all i ∈ N\T , i 6= `.
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Corollary 4.5.23. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) For every n-person clan game v : P(N) → R, with coalition T ⊆ N
as the clan, the following three statements concerning a payoff vector ~y =
(yk)k∈N ∈ RN are equivalent.

(i) ~y ∈ Core(v), i.e., ~y(N) = v(N) and ~y(S) ≥ v(S) for all
S ⊆ N , S 6= ∅

(ii) ~y(N) = v(N) and πv(~y) = 0

(iii) ~y(N) = v(N) and yi ≥ 0 for all i ∈ N and yi ≤ bvi for all
i ∈ N\T

Finally, we remark that a geometrical characterization of a clan game,
say with coalition T ⊆ N as the clan.

Theorem 4.5.24. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Let v : P(N) → R be an n-person TU game and ~x = (xk)k∈N ∈ RN

satisfying the efficiency principle ~x(N) = v(N).

(i) For every pair of players i, j ∈ N , i 6= j, the indirect function πv :
RN → R satisfies πv(~xijδ) = svij(~x) + δ, provided δ ≥ 0 is sufficiently
large.

(ii) ~x ∈ K∗(v) if and only if the evaluation of the pairwise bargaining ranges
arising from ~x through the indirect function are in equilibrium, that is,
for every pair of players i, j ∈ N , i 6= j, the indirect function satisfies
πv(~xijδ) = πv(~xjiδ) for δ sufficiently large.

Remark 4.5.25. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Suppose the n-person TU game v : P(N) → R is 1-convex. For
every payoff vector ~x = (xk)k∈N ∈ RN satisfying the efficiency principle

~x(N) = v(N) as well as ~x ≤ ~bv, and for every pair of players i, j ∈ N ,
i 6= j, the evaluation of the indirect function πv : RN → R at the tail of the
bargaining range described by the corresponding modified payoff vector ~xijδ is
in accordance with Theorem 4.5.16(i)–(ii) dependent on the size of its j-th
component ~xijδj = xj + δ in comparison to player j-th marginal benefit bvj .
From the explicit formula for the indirect function of 1-convex games, we
conclude the following:

πv(~xijδ) = 0 if xijδj ≤ bvj , that is δ ≤ bvj − xj

πv(~xijδ) = max[0, xijδj − bvj ] = xj + δ − bvj > 0 otherwise
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For sufficiently large δ, the equilibrium condition πv(~xijδ) = πv(~xjiδ) is met
if and only if xj + δ− bvj = xi + δ− bvi , that is xj − bvj = xi− bvi for all i 6= j.
Together with the efficiency principle ~x(N) = v(N), the unique solution of
this system of linear equations is given by

xi = bvi −
α

n
for all i ∈ N , where α = ~bv(N)− v(N) ≥ 0

The latter solution is known as the nucleolus and turns out to coincide with
the gravity of the core being the convex hull of n extreme points of the form
~bv − α · ~ei, i ∈ N . Here {~e1, ~e2, . . . , ~en} denotes the standard basis of Rn.

Remark 4.5.26. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Suppose the TU game v : P(N) → R is a big boss game, with player
1 as the big boss. For every payoff vector ~x = (xk)k∈N ∈ RN satisfying the
efficiency principle ~x(N) = v(N) as well as 0 ≤ xk ≤ bvk for all k ∈ N\{1},
and for every pair of players i, j ∈ N , i 6= j, the evaluation of the indi-
rect function πv : RN → R at the tail of the bargaining range described by
the corresponding modified payoff vector ~xj`δ is in accordance with Theorem
4.5.20(i)–(iv) dependent on the size of its j-th component ~xj`δj = xj − δ in

comparison to the zero level as well as its `-th component ~xj`δ` = x` + δ
in comparison to player `-th marginal benefit bv` . From the explicit formula
for the indirect function of big boss games, we conclude the following: for
{j, `} ⊆ N\{1}, and for δ ≥ 0 sufficiently large

πv(~xj`δ) = max[−(xj − δ), (x` + δ)− bv` ] = δ −min[xj, b
v
` − x`]

πv(~x1`δ) = max[0, (x` + δ)− bv` ] = δ + x` − bv`
πv(~x`1δ) = max[0, −(x` − δ)] = δ − x`

For all ` ∈ N\{1} and sufficiently large δ, the equilibrium condition

πv(~x1`δ) = πv(~x`1δ) is met if and only if x` − bv` = −x`, that is x` =
bv`
2

for all ` 6= 1. Further, the equilibrium condition πv(~xj`δ) = πv(~x`jδ) for any
pair {j, `} ⊆ N\{1} is given by

min[xj, b
v
` − x`] = min[x`, b

v
j − xj]which equalities are satisfied.

Remark 4.5.27. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Suppose the TU game v : P(N) → R is a clan game, say coalition
T ⊆ N with at least two players is the clan. From the explicit formula for
the indirect function of clan games, as presented in Theorem 4.5.22 (ii)–
(iv), we conclude that, for δ ≥ 0 sufficiently large, the equilibrium condition
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πv(~xijδ) = πv(~xjiδ) reduces to the following system of equations: xi = xj for
all i, j ∈ T , and

xi = min[bvi − xi, xj] whenever i 6∈ T , j ∈ T

min[bvj − xj, xi] = min[bvi − xi, xj] whenever i, j 6∈ T

In summary, the unique solution is a so-called constrained equal reward rule
of the form xi = λ for all i ∈ T and xi = min[λ,

bvi
2

] for all i ∈ N\T , where
the parameter λ ∈ R is determined by the efficiency condition ~x(N) = v(N).

Remark 4.5.28. (D. Hou, T.S.H. Driessen, A. Meseguer-Artola, B. Mosoni
[78]) Suppose the n-person TU game v : P(N) → R is 2-convex. From the
explicit formula for the indirect function of 2-convex n-person games, as pre-
sented in Theorem 4.5.18(iv), we conclude that, for δ ≥ 0 sufficiently large,
the equilibrium condition πv(~xj`δ) = πv(~x`jδ) reduces to the following system
of equations: for every pair of players j, ` ∈ N , j 6= `,

min[bv` − x`, xj − v({j})] = min[bvj − xj, x` − v({`})]

As shown in [67], the unique solution is of the parametric form xi = v({i})+

min[µ, bvi −
v({i})

2
] for all i ∈ N , where the parameter µ ∈ R is determined

by the efficiency condition ~x(N) = v(N).



Chapter 5

The maximal monotonicity of
the generalized sum of two
maximal monotone operators

In what follows X, respectively Y will be Banach spaces, and X∗, respectively
Y ∗ denote their dual spaces. Let S : X → 2X

∗
, respectively T : Y → 2Y

∗
be

two monotone operators. Moreover, consider the continuous, linear operator
A : X → Y, and let us denote by A∗ its adjoint operator. Recall that the a
generalized sum (see [130]), of the monotone operators S, respectively T is
defined as

M : X → 2X
∗
, M(x) = (S + A∗TA)(x).

Obviously, when X = Y and A ≡ idX , this sum collapses to the sum of the
monotone operators, that is

M : X → 2X
∗
, M(x) := (S + T )(x),

while in the case when S(x) = 0 for all x ∈ X, we obtain the composite
operator

M : X → 2X
∗
, M(x) = A∗TA(x).

Consider X a separated locally convex space and X∗ its topological dual
space.

5.1 Maximal monotone operators and repre-

sentative functions

Consider further X a nontrivial Banach space, X∗ its topological dual space
and X∗∗ its bidual space. A set-valued operator S : X → 2X

∗
is said to be
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monotone if

〈y∗ − x∗, y − x〉 ≥ 0, whenever y∗ ∈ S(y) and x∗ ∈ S(x).

The monotone operator S is called maximal monotone if its graph

G(S) = {(x, x∗) : x∗ ∈ S(x)} ⊆ X ×X∗

is not properly contained in the graph of any other monotone operator S ′ :
X → 2X

∗
. For S we consider also its domain D(S) = {x ∈ X : S(x) 6= ∅} =

prX(G(S)) and its range R(S) = ∪x∈XS(x) = prX∗(G(S)).
An element (x0, x

∗
0) ∈ X ×X∗ is said to be monotonically related to the

graph of S if

〈y∗ − x∗0, y − x0〉 ≥ 0 for all (y, y∗) ∈ G(S).

One can show that a monotone operator S is maximal monotone if and only
if the set of monotonically related elements to G(S) is exactly G(S).

To an arbitrary monotone operator S : X → 2X
∗

we associate the Fitz-
patrick function ϕS : X ×X∗ → R, defined by

ϕS(x, x∗) = sup{〈y∗, x〉+ 〈x∗, y〉 − 〈y∗, y〉 : y∗ ∈ S(y)},

which is obviously convex and strong-weak∗ lower semicontinuous (it is even
weak-weak∗ lower semicontinuous) in the corresponding topology on X×X∗.
Introduced by Fitzpatrick in 1988 (see [72]) and rediscovered after some
years in [44, 104], it proved to be very important in the theory of maximal
monotone operators, revealing important connections between convex analy-
sis and monotone operators (see [19,32], [40,41], [44,105], [129,130,140,144],
[127,128,145,156] and the references therein).

Considering the function c : X × X∗ → R, c(x, x∗) = 〈x∗, x〉 for all
(x, x∗) ∈ X ×X∗, we get the equality ϕS(x, x∗) = c∗S(x∗, x) for all (x, x∗) ∈
X × X∗, where cS = c + δG(S) and we are considering the natural injection
X ⊆ X∗∗. The function psiS = cl‖·‖×‖·‖∗(cocS), where the closure is taken in
the strong topology of X ×X∗, is well-linked to the Fitzpatrick function. Its
properties were intensively studied in reflexive Banach spaces in [129] and
in general Banach spaces in [44]. Let us mention that on X × X∗ we have
ψ∗>S = ϕS and, in the framework of reflexive Banach spaces the equality
ϕ∗>S = ψS holds (see [44, Remark 5.4]). Let us recall the most important
properties of the Fitzpatrick function.

Lemma 5.1.29. ( see [72]) Let S : X → 2X
∗

be a maximal monotone opera-
tor. Then
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(i) ϕS(x, x∗) ≥ 〈x∗, x〉 for all (x, x∗) ∈ X ×X∗,

(ii) G(S) = {(x, x∗) ∈ X ×X∗ : ϕS(x, x∗) = 〈x∗, x〉}.

Motivated by these properties of the Fitzpatrick function, the notion of
representative function of a monotone operator was introduced and studied
in the literature.

Definition 5.1.30. For S : X → 2X
∗

a monotone operator, we call rep-
resentative function of S a convex and lower semicontinuous function hS :
X ×X∗ → R (in the strong topology of X ×X∗) fulfilling

hS ≥ c and G(S) ⊆ {(x, x∗) ∈ X ×X∗ : hS(x, x∗) = 〈x∗, x〉}.

We observe that if G(S) 6= ∅ (in particular if S is maximal monotone),
then every representative function of S is proper. It follows immediately
that the Fitzpatrick function associated to a maximal monotone operator
is a representative function of the operator. The following proposition is a
direct consequence of some results given in [44].

Proposition 5.1.31. Let S : X → 2X
∗

be a maximal monotone operator
and hS be a representative function of S. Then

(i) ϕS ≤ hS ≤ ψS,

(ii) the canonical restriction of h∗>S to X × X∗ is also a representative
function of S,

(iii) {(x, x∗) ∈ X × X∗ : hS(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗ :
h∗>S (x, x∗) = 〈x∗, x〉} = G(S).

Remark 5.1.32. In many situations the representative functions are lower
semicontinuous in the strong-weak∗ topology, as it is the case for example for
the Fitzpatrick functions of monotone operators. As Proposition 5.1.31(ii)
shows, for every representative function of a maximal monotone operator one
obtains a corresponding representative function which is strong-weak∗ lower
semicontinuous. Moreover, when S = ∂f , where f : X → R is a proper,
convex and lower semicontinuous function, then the function (x, x∗) 7→ f(x)+
f ∗(x∗), which is a representative of ∂f , is lower semicontinuous in the strong-
weak∗ topology. Hence, for S : X → 2X

∗
a monotone operator, it is natural to

consider also the subfamily of H(S) formed by those representative functions
of S which are lower semicontinuous with respect to the strong-weak∗ topology
of X ×X∗. Let us notice that in general this is a proper subfamily (cf. [146,
Remark 1]), while in the setting of reflexive Banach spaces it coincides with
H(S).
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Let us give the following maximality criteria valid in reflexive Banach
spaces (cf. [43, Theorem 3.1] and [130, Proposition 2.1]; see also [141] for
other maximality criteria in reflexive spaces). We refer to [106, Theorem 4.2]
for a generalization of the next result to arbitrary Banach spaces.

Theorem 5.1.33. ( cf. [43, 130]) Let X be a reflexive Banach space and
f : X × X∗ → R a proper, convex and lower semicontinuous function such
that f ≥ c. Then the operator whose graph is the set {(x, x∗) ∈ X × X∗ :
f(x, x∗) = 〈x∗, x〉} is maximal monotone if and only if f ∗>

∣∣
X×X∗ ≥ c.

The following particular class of maximal monotone operators has been
recently introduced in [106], being also studied in [147].

Definition 5.1.34. An operator S : X → 2X
∗

is said to be strongly-
representable whenever there exists a proper, convex and strong lower semi-
continuous function h : X ×X∗ → R such that

h ≥ c, h∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉∀(x∗, x∗∗) ∈ X∗ ×X∗∗

and
G(S) = {(x, x∗) ∈ X ×X∗ : h(x, x∗) = 〈x∗, x〉}.

In this case h is called a strong-representative of S.

We will need the following result (see [106, Theorem 4.2]).

Theorem 5.1.35. Let X be a nonzero Banach space and h : X ×X∗ → R
a proper, convex and lower semicontinuous function such that h ≥ c and
h∗(x∗, x∗∗) ≥ 〈x∗∗, x∗〉 for all (x∗, x∗∗) ∈ X∗ ×X∗∗. Then the operator whose
graph is the set {(x, x∗) ∈ X×X∗ : h(x, x∗) = 〈x∗, x〉} is maximal monotone
and it holds {(x, x∗) ∈ X × X∗ : h(x, x∗) = 〈x∗, x〉} = {(x, x∗) ∈ X × X∗ :
h∗(x∗, x) = 〈x∗, x〉}.

Hence, if S : X → 2X
∗

is strongly-representable, then S is maximal
monotone (see also [147, Theorem 8]), and ϕS is a strong-representative of
S.

Definition 5.1.36. ( see [75]) Gossez’s monotone closure of a maximal mono-
tone operator S : X → 2X

∗
is S : X∗∗ → 2X

∗
,

G(S) = {(x∗∗, x∗) ∈ X∗∗ ×X∗ : 〈x∗ − y∗, x∗∗ − y〉 ≥ 0, ∀(y, y∗) ∈ G(S)}.

A maximal monotone operator S : X → 2X
∗

is of Gossez type (D) if for
any (x∗∗, x∗) ∈ G(S), there exists a bounded net {(xα, x∗α)}α∈I ⊆ G(S) which
converges to (x∗∗, x∗) in the w∗ × ‖ · ‖ topology of X∗∗ ×X∗.
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In [142] Simons introduced a new class of maximal monotone operators,
called operators of negative infimum type (NI).

Definition 5.1.37. ( see [142]) A maximal monotone operator S : X → 2X
∗

is of Simons type (NI) if

inf
(y,y∗)∈G(S)

〈y∗ − x∗, y − x∗∗〉 ≥ 0, (∀)(x∗, x∗∗) ∈ X∗ ×X∗∗.

5.2 The stable strong duality and a gener-

alized bivariate infimal convolution for-

mula

Let X and Y be real separated locally convex spaces, with their topological
duals X∗ and Y ∗, respectively.

Theorem 5.2.38. (B. Burjan-Mosoni (Mosoni), S. László [47]) Let
f : X → R and g : Y → R be proper, convex and lower semicontinuous func-
tions, let A : X → Y be a linear and continuous operator, and A∗ : Y ∗ → X∗

be its adjoint operator. Assume that dom(f) ∩ A−1(dom(g)) 6= ∅.

(a) Let U be a nonempty subset of X∗. The following statements are equiv-
alent:

(i) supx∈X{〈x∗, x〉−(f+g◦A)(x)} = miny∗∈Y ∗{f ∗(x∗−A∗y∗)+g∗(y∗)}
for all x∗ ∈ U.
(ii) The set {(x∗ + A∗y∗, r) : f ∗(x∗) + g∗(y∗) ≤ r} is closed regarding
to U × R in (X∗, w∗)× R topology.

(b) If X and Y are Fréchet spaces and

0 ∈ ic(dom(g)− A(dom(f))),

then the statements (i) and (ii) are valid for every U ⊆ X∗.

Remark 5.2.39. According to Proposition 4 from [153], if X and Y are
Fréchet spaces, we have

ic(prY (domΦA)) = ri(prY (domΦA)),

or, equivalently

ic(dom(g)− A(dom(f))) = ri(dom(g)− A(dom(f))).
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Remark 5.2.40. (B. Burjan-Mosoni (Mosoni), S. László [47])Observe
that if X and Y are Fréchet spaces, then the condition the set {(x∗+A∗y∗, r) :
f ∗(x∗) + g∗(y∗) ≤ r} is closed in (X∗, w∗) × R topology is weaker than the
condition 0 ∈ ic(dom(g)− A(dom(f))).

In what follows, let X and Y be two normed spaces, with their dual X∗

and Y ∗, and consider the proper, convex and lower semicontinuous functions
f : X × X∗ → R and g : Y × Y ∗ → R. Assume, that the dual spaces of
X ×X∗ and Y × Y ∗ respectively, X∗ ×X∗∗ and Y ∗ × Y ∗∗ respectively, are
endowed with the w∗ topology. Moreover, let A : X → Y be a linear and
continuous operator and A∗ : Y ∗ → X∗, respectively A∗∗ : X∗∗ → Y ∗∗ be its
adjoint, respectively its biadjoint operator.

Consider the following generalized inf-convolution formulas, f4A
2 g : X ×

X∗ → R

(f4A
2 g)(x, x∗) = inf{f(x, x∗ − A∗y∗) + g(Ax, y∗) : y∗ ∈ Y ∗},

respectively, f ∗4A
1 g
∗ : X∗ ×X∗∗ → R, (f ∗4A

1 g
∗)(x∗, x∗∗)

= inf{f ∗(x∗ − A∗y∗, x∗∗) + g∗(y∗, A∗∗x∗∗) : y∗ ∈ Y ∗}.

The above formulas were intensively studied by Voisei and Zalinescu
in [147], Simons and Zalinescu in [144], and Simons in [143]. However,
they provided interior-point regularity conditions only, that ensures that
(f4A

2 g)∗(x∗, x∗∗) = (f ∗4A
1 g
∗)(x∗, x∗∗) and f ∗4A

1 g
∗ is exact for every (x∗, x∗∗) ∈

X∗ × X∗∗. Obviously, when A ≡ idX , X = Y we obtain f ∗�1g
∗ and f�2g,

respectively, (see, for instance, [37, 140,144,147]), that is

(f ∗�1g
∗)(x∗, x∗∗) = inf{f ∗(x∗ − y∗, x∗∗) + g∗(y∗, x∗∗) : y∗ ∈ X∗},

respectively, (f�2g)(x, x∗)

= inf{f(x, x∗ − y∗) + g(x, y∗) : y∗ ∈ X∗}.

The following result provides a closedness type regularity condition that not
only ensures that (f4A

2 g)∗(x∗, x∗∗) = (f ∗4A
1 g
∗)(x∗, x∗∗) and f ∗4A

1 g
∗ is exact

for every (x∗, x∗∗) ∈ X∗ ×X∗∗, but also is equivalent to it.

Theorem 5.2.41. (B. Burjan-Mosoni (Mosoni), S. László [47])
Assume that A(prX(dom(f))) ∩ (prY (dom(g))) 6= ∅.

a) The following statements are equivalent:

(i) The set {(x∗ + A∗y∗, x∗∗, y∗∗, r) : f ∗(x∗, x∗∗) + g∗(y∗, y∗∗) ≤ r} is
closed regarding the set X∗ ×∆A∗∗

X∗∗ × R in the (X∗, w∗) × (X∗∗, w∗) ×
(Y ∗∗, w∗)× R topology, where ∆A∗∗

X∗∗ = {(x∗∗, A∗∗x∗∗) : x∗∗ ∈ X∗∗}.
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(ii) (f4A
2 g)∗(x∗, x∗∗) = (f ∗4A

1 g
∗)(x∗, x∗∗) and f ∗4A

1 g
∗ is exact (that is,

the infimum in the definition of f ∗4A
1 g
∗ is attained) for every (x∗, x∗∗) ∈

X∗ ×X∗∗.

b) If
0 ∈ ic(prY dom(g)− A(prXdom(f)))

then the statements (i) and (ii) are true.

Remark 5.2.42. (B. Burjan-Mosoni (Mosoni), S. László [47])
In the hypotheses of Theorem 5.2.41 and by keeping the notations used

in its proof, according to Remark 5.2.39, we have

ic(dom(G)−N(dom(F ))) = ri(dom(G)−N(dom(F ))),

which is equivalent to

ic(prY dom(g)− A(prXdom(f)))

= ri(prY dom(g)− A(prXdom(f))).

By taking X = Y and A ≡ idX in Theorem 5.2.41 we obtain the following
result, (see also [37]).

Corollary 5.2.43. (B. Burjan-Mosoni (Mosoni), S. László [47])
Assume that prX(dom(f) ∩ (prX(dom(g))) 6= ∅.

a) The following statements are equivalent:

(i) The set {(u∗+ v∗, u∗∗, v∗∗, r) : f ∗(u∗, u∗∗) + g∗(v∗, v∗∗) ≤ r} is closed
regarding the set X∗×∆X∗∗×R in the (X∗, w∗)×(X∗∗, w∗)×(X∗∗, w∗)×
R topology, where ∆X∗∗ = {(x∗∗, x∗∗) : x∗∗ ∈ X∗∗}.
(ii) (f�2g)∗(x∗, x∗∗) = (f ∗�1g

∗)(x∗, x∗∗) and f ∗�1g
∗ is exact for every

(x∗, x∗∗) ∈ X∗ ×X∗∗.

b) If
0 ∈ ic(prXdom(g)− prXdom(f))

= ri(prXdom(g)− prXdom(f))

then the statements (i) and (ii) are true.

Let now X and Y be a reflexive Banach spaces. Then, Theorem 5.2.41
becomes.
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Corollary 5.2.44. (B. Burjan-Mosoni (Mosoni), S. László [47])
Consider the proper, convex and lower semicontinuous functions f : X ×

X∗ → R and g : Y × Y ∗ → R. If A(prX(dom(f))) ∩ (prY (dom(g))) 6= ∅ then
the following conditions are equivalent.

(i) The set {(x∗ + A∗y∗, x, y, r) : f ∗(x∗, x) + g∗(y∗, y) ≤ r} is closed re-
garding the set X∗ ×∆A

X × R in the (X∗, ‖ · ‖∗) × (X, ‖ · ‖) × (Y, ‖ · ‖) × R
topology, where ∆A

X = {(x,Ax) : x ∈ X}.
(ii) (f4A

2 g)∗(x∗, x) = (f ∗4A
1 g
∗)(x∗, x) and f ∗4A

1 g
∗ is exact for every

(x∗, x) ∈ X∗ ×X.

Concerning on the formula 4A
1 we are able to establish a similar result to

Theorem 5.2.41 only in a reflexive Banach space context. In what follows we
assume that X, respectively Y are reflexive Banach spaces, with their biduals
identified with X, respectively Y. In this case we have f ∗4A

1 g
∗ : X∗×X → R,

(f ∗4A
1 g
∗)(x∗, x) = inf{f ∗(x∗ − A∗y∗, x) + g∗(y∗, Ax) : y∗ ∈ Y ∗}.

Theorem 5.2.45. (B. Burjan-Mosoni (Mosoni), S. László [47]) Assume
that A(prX(dom(f ∗))) ∩ (prY (dom(g∗))) 6= ∅.

a) The following statements are equivalent:

(i) The set {(x∗ + A∗y∗, x, y, r) : f(x, x∗) + g(y, y∗) ≤ r} is closed
regarding the set X∗×∆A

X×R in the (X∗, ‖·‖∗)×(X, ‖·‖)×(Y, ‖·‖)×R
topology, where ∆A

X = {(x,Ax) : x ∈ X}.
(ii) (f ∗4A

1 g
∗)∗(x, x∗) = (f4A

2 g)(x, x∗) and (f4A
2 g) is exact (that is,

the infimum in the definition of f4A
2 g is attained) for every (x, x∗) ∈

X ×X∗.

b) If
0 ∈ ic(prY dom(g∗)− A(prXdom(f ∗)))

then the statements (i) and (ii) are true.

Remark 5.2.46. (B. Burjan-Mosoni (Mosoni), S. László [47])In the
hypotheses of Theorem 5.2.45 and by keeping the notations used in its proof,
according to Remark 5.2.39, we have

ic(dom(G)−N(dom(F ))) = ri(dom(G)−N(dom(F ))),

which is equivalent to

ic(prY dom(g∗)− A(prXdom(f ∗)))

= ri(prY dom(g∗)− A(prXdom(f ∗))).
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By taking X = Y and A ≡ idX in Theorem 5.2.45 we obtain the following
result.

Corollary 5.2.47. (B. Burjan-Mosoni (Mosoni), S. László [47])
Assume that prX(dom(f ∗)) ∩ prY (dom(g∗)) 6= ∅.

a) The following statements are equivalent:

(i) The set {(x∗+x∗, x, x, r) : f(x, x∗)+g(y, y∗) ≤ r} is closed regarding
the set X∗ × ∆X × R in the (X∗, ‖ · ‖∗) × (X, ‖ · ‖) × (X, ‖ · ‖) × R
topology, where ∆X = {(x, x) : x ∈ X}.
(ii) (f ∗�1g

∗)∗(x, x∗) = (f�2g)(x, x∗) and f�2g is exact for every (x, x∗) ∈
X ×X∗.

b) If
0 ∈ ic(prXdom(g∗)− prXdom(f ∗))

= ri(prXdom(g∗)− prXdom(f ∗))

then the statements (i) and (ii) are true.

5.3 The maximal monotonicity of the opera-

tor S + A∗TA

In what follows X, respectively Y will be Banach spaces, X∗, respectively
Y ∗ denote their dual spaces, X∗∗, respectively Y ∗∗ denote their bidual spaces.
Consider the monotone operators S : X → 2X

∗
and T : Y → 2Y

∗
and let

A : X → Y be a linear and continuous operator, and A∗ its adjoint operator.
A well known generalized sum involving S and T is defined as follows:

M : X → 2X
∗
, M := S + A∗TA.

Obviously, when X = Y, A ≡ idX , then M becomes the well known sum of
the operators S and T, that is M := S + T, while in the case when Sx = 0,
for all x ∈ X, M becomes the composition A∗TA.

In what follows we give some sufficient conditions which ensure the max-
imal monotonicity of S+A∗TA, where S, respectively T are maximal mono-
tone operators of Gossez type (D).

Theorem 5.3.48. (B. Burjan-Mosoni (Mosoni), S. László [47]) Con-
sider A : X → Y a linear and continuous operator and let us denote by A∗

its adjoint operator, and by A∗∗ its biadjoint operator. Let S : X → 2X
∗

and
T : Y → 2Y

∗
be two strongly-representable monotone operators with strong
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representative functions hS and hT respectively, such that A(prX(dom(hS)))∩
(prY (dom(hT ))) 6= ∅. Consider the function h : X × X∗ → R, h(x, x∗) =
cl‖·‖×‖·‖∗(hS4A

2 hT )(x, x∗). Assume that one of the following conditions is ful-
filled.

(a) 0 ∈ ic(prY dom(hT )− A(prXdom(hS)));

(b) the set {(x∗ +A∗y∗, x∗∗, y∗∗, r) : h∗S(x∗, x∗∗) + h∗T (y∗, y∗∗) ≤ r} is closed
regarding the set X∗×∆A∗∗

X∗∗×R in the (X∗, w∗)×(X∗∗, w∗)×(Y ∗∗, w∗)×
R topology, where ∆A∗∗

X∗∗ = {(x∗∗, A∗∗x∗∗) : x∗∗ ∈ X∗∗}.

Then h is a strong representative function of S +A∗TA and S +A∗TA is a
strongly-representable monotone operator.

Assume now, that X and Y are reflexive Banach spaces. Then the fol-
lowing result holds.

Theorem 5.3.49. (B. Burjan-Mosoni (Mosoni), S. László [47]) Con-
sider A : X → Y a linear and continuous operator and let us denote by
A∗ its adjoint operator. Let S : X → 2X

∗
and T : Y → 2Y

∗
be two maxi-

mal monotone operators with representative functions hS and hT respectively,
such that A(prX(dom(h∗S))) ∩ (prY (dom(h∗T ))) 6= ∅. Consider the function
h : X × X∗ → R, h(x, x∗) = (h∗S4A

1 h
∗
T )∗(x, x∗). Assume that one of the

following conditions is fulfilled.

(a) 0 ∈ ic(prY dom(h∗T )− A(prXdom(h∗S)));

(b) the set {(x∗+A∗y∗, x, y, r) : hS(x, x∗) +hT (y, y∗) ≤ r} is closed regard-
ing the set X∗ ×∆A

X ×R in the (X∗, ‖ · ‖∗)× (X, ‖ · ‖)× (Y, ‖ · ‖)×R
topology.

Then h is a representative function of S+A∗TA and S+A∗TA is a maximal
monotone operator.

Let us mention that the results from this section were partially established
by Simons in [143], Voisei and Zalinescu in [147,148].

5.4 Particular cases

Considering X = Y and A ≡ idX the generalized sum S + A∗TA becomes
S + T , and 4A

1 , respectively 4A
2 become �1, respectively �2, hence from

Theorem 5.3.48, we obtain the following:
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Corollary 5.4.50. (B. Burjan-Mosoni (Mosoni), S. László [47])
Let S, T : X → 2X

∗
be two strongly-representable monotone operators,

with strong representative functions hS and hT , such that

(prX(dom(hS))) ∩ (prY (dom(hT ))) 6= ∅,

and consider the function h : X ×X∗ → R,

h(x, x∗) = cl‖·‖×‖·‖∗(hS�2hT )(x, x∗).

Assume that one of the following conditions is fulfilled.

(a) 0 ∈ ic(prXdom(hT )− prXdom(hS));

(b) the set {(x∗ + y∗, x∗∗, y∗∗, r) : h∗S(x∗, x∗∗) + h∗T (y∗, y∗∗) ≤ r} is closed
regarding the set X∗×∆X∗∗×R in the (X∗, w∗)×(X∗∗, w∗)×(X∗∗, w∗)×
R topology, where ∆X∗∗ = {(x∗∗, x∗∗) : x∗∗ ∈ X∗∗}.

Then h is a strong representative function of S+T , hence S+T is a strongly-
representable monotone operator.

Assume now, that X is a reflexive Banach space. Then according to
Theorem 5.3.49, the following result holds.

Corollary 5.4.51. (B. Burjan-Mosoni (Mosoni), S. László [47]) Let
S, T : X → 2X

∗
be two maximal monotone operators with representative

functions hS and hT respectively, such that prX(dom(h∗S))∩prX(dom(h∗T )) 6=
∅. Consider the function h : X ×X∗ → R

h(x, x∗) = (h∗S�1h
∗
T )∗(x, x∗).

Assume that one of the following conditions is fulfilled.

(a) 0 ∈ ic(prXdom(h∗T )− prXdom(h∗S));

(b) the set {(x∗+ y∗, x, y, r) : hS(x, x∗) + hT (y, y∗) ≤ r} is closed regarding
the set X∗ × ∆X × R in the (X∗, ‖ · ‖∗) × (X, ‖ · ‖) × (X, ‖ · ‖) × R
topology.

Then h is a representative function of S+T and S+T is a maximal monotone
operator.



5.4 Particular cases 37

Let us mention that the above result was partially obtained also in [37].
For the second particular instance assume that S : X → 2X

∗
is the mul-

tivalued operator with G(S) = X × {0}, which is obviously a strongly-
representable operator. Its extension to the bidual, S : X∗∗ → 2X

∗
, ful-

fills G(S) = X × {0}. Since ϕS = ψS = δX×{0}, by Proposition 5.1.31 it
follows that the only representative function of S is hS = δX×{0}. Since
h∗S = δ{0}×X∗∗ , hS is actually a strong representative function of S.

Having hT : Y ×Y ∗ → R a representative function T , the extended infimal
convolutions hS4A

2 hT and h∗S4A
2 h
∗
T of hS and hT become in this situation

hAT : X ×X∗ → R, hAT (x, x∗) = inf{hT (Ax, v∗) : v∗ ∈ Y ∗, A∗v∗ = x∗}

and h∗AT : X∗ ×X∗∗ → R,

h∗AT (x∗, x∗∗) = inf{h∗T (v∗, A∗∗x∗∗) : v∗ ∈ Y ∗, A∗v∗ = x∗},

respectively.
Noticing that

A(prX(domhS))− prY (domhT ) = im A− prY (domhT )

, Theorem 5.3.48 gives rise to the following result.

Corollary 5.4.52. (B. Burjan-Mosoni (Mosoni), S. László [47]) Let
T : Y → 2Y

∗
be a strongly-representable monotone operator with strong

representative function hT and A : X → Y a linear continuous mapping such
that im A ∩ prY (domhT ) 6= ∅. Assume that one of the following conditions
is fulfilled:

(a) 0 ∈ ic(im A− prY (domhT ));

(b) the set {(A∗v∗, v∗∗, r) : r ∈ R, h∗T (v∗, v∗∗) ≤ r} is closed regarding
X∗ × im A∗∗ × R in (X∗, w∗)× (Y ∗∗, w∗)× R topology.

Then the function h : X ×X∗ → R, h(x, x∗) = cl‖·‖×‖·‖∗h
A
T (x, x∗), is a strong

representative function of A∗TA and A∗TA is a strongly-representable mono-
tone operator.

Assume now, that X and Y are reflexive Banach spaces. Then according
to Theorem 5.3.49, the following result holds.

Corollary 5.4.53. (B. Burjan-Mosoni (Mosoni), S. László [47]) Let T :
Y → 2Y

∗
be a maximal monotone operators with representative function hT

and A : X → Y a linear continuous mapping such that im A∩prY (domhT ) 6=
∅. Assume that one of the following conditions is fulfilled:
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(a) 0 ∈ ic(im A− prY (domhT ));

(b) the set {(A∗v∗, v, r) : r ∈ R, hT (v, v∗) ≤ r} is closed regarding X∗ ×
im A× R in (X∗, | · ‖∗)× (Y, | · ‖)× R topology.

Then the function h : X ×X∗ → R, h(x, x∗) = hAT (x, x∗), is a representative
function of A∗TA and A∗TA is a maximal monotone operator.

Let us mention that these results were partially also established by Voisei
in [148].
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[6] L.Q. Anh, P.Q. Khanh: On the Hölder continuity of solutions to para-
metric multivalued vector equilibrium problems, J. of Math. Analysis
and Appl. vol. 321, pp. 308-315, 2006

[7] L.Q. Anh, P.Q. Khanh: On the Stability of the Solution Sets of General
Multivalued Vector Quasiequilibrium Problems, J. Opt. Theory Appl.
vol. 135, pp. 271-284, 2007

[8] L.Q. Anh, P.Q. Khanh: Various kinds of semicontinuity and the solu-
tion sets of parametric multivalued symmetric vector quasiequilibrium
problems, J. Global Optim. vol. 41, pp. 539-558, 2008



BIBLIOGRAPHY 40

[9] L.Q. Anh, P.Q. Khanh: Uniqueness and Hölder continuity of the so-
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Global Optim., DOI 10.1007/s10898-007-9268-4

[11] Q.H. Ansari, I.V. Konnov, J.C. Yao: Characterization of solutions for
vector equilibrium problems, J Optim Theory Appl vol. 113, nr. 3, pp.
435-447, 2002

[12] Q.H. Ansari, I.V. Konnov, J.C. Yao: Existence of a solution and vari-
ational principles for vector equilibrium problems, J. Optim. Theory
Appl. vol. 110, pp. 481-492, 2001

[13] J. Arin, V. Feltkamp: The nucleolus and kernel of veto-rich transferable
utility games. Int J Game Theory vol. 26, pp. 61-73, 1997

[14] J.P. Aubin: Mathematical methods of game and economic theory, North
Holland, Amsterdam, 1979

[15] J.P. Aubin, H. Frankowska: Set-Valued Analysis, Birkhäuser, Boston,
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[130] J.P. Penot, C. Zălinescu, Convex analysis can be helpful for the asymp-
totic analysis of monotone operators, Math. Program., Ser. B, vol. 116,
pp.481-498, 2009



BIBLIOGRAPHY 50
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[144] S. Simons, C. Zălinescu: Fenchel duality, Fitzpatrick functions and
maximal monotonicity, Journal of Nonlinear and Convex Analysis, vol.
6, pp. 1-22, 2005



BIBLIOGRAPHY 51

[145] M.D. Voisei: Calculus rules for maximal monotone operators in general
Banach spaces, Journal of Convex Analysis, vol. 15, pp. 73-85, 2008
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